On a new type of stability of a radical cubic functional equation related to Jensen mapping

Authors

  • S. A. A. AL-Ali Department of Mathematics‎, ‎Faculty of Sciences‎, ‎Ibn Tofail University‎, ‎BP-14000‎, ‎Kenitra‎, ‎Morocco
  • Y. Elkettani Department of Mathematics‎, ‎Faculty of Sciences‎, ‎Ibn Tofail University‎, ‎BP-14000‎, ‎Kenitra‎, ‎Morocco
Abstract:

‎The aim of this paper is to introduce and solve the‎ radical cubic functional equation‎ ‎$‎‎fleft(sqrt[3]{x^{3}+y^{3}}right)+fleft(sqrt[3]{x^{3}-y^{3}}right)=2f(x)‎$.‎ ‎We also investigate some stability and hyperstability results for‎ ‎the considered equation in 2-Banach spaces‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

2-Banach stability results for the radical cubic functional equation related to quadratic mapping

The aim of this paper is to introduce and solve the generalized radical cubic functional equation related to quadratic functional equation$$fleft(sqrt[3]{ax^{3}+by^{3}}right)+fleft(sqrt[3]{ax^{3}-by^{3}}right)=2a^{2}f(x)+2b^{2}f(y),;; x,yinmathbb{R},$$for a mapping $f$ from $mathbb{R}$ into a vector space. We also investigate some stability and hyperstability results for...

full text

Non-Archimedean stability of Cauchy-Jensen Type functional equation

In this paper we investigate the generalized Hyers-Ulamstability of the following Cauchy-Jensen type functional equation$$QBig(frac{x+y}{2}+zBig)+QBig(frac{x+z}{2}+yBig)+QBig(frac{z+y}{2}+xBig)=2[Q(x)+Q(y)+Q(z)]$$ in non-Archimedean spaces

full text

non-archimedean stability of cauchy-jensen type functional equation

in this paper we investigate the generalized hyers-ulamstability of the following cauchy-jensen type functional equation$$qbig(frac{x+y}{2}+zbig)+qbig(frac{x+z}{2}+ybig)+qbig(frac{z+y}{2}+xbig)=2[q(x)+q(y)+q(z)]$$ in non-archimedean spaces

full text

A new type of Hyers-Ulam-Rassias stability for Drygas functional equation

In this paper, we prove the generalized Hyers-Ulam-Rassias stability for the Drygas functional equation$$f(x+y)+f(x-y)=2f(x)+f(y)+f(-y)$$ in Banach spaces by using the Brzc{d}ek's fixed point theorem. Moreover, we give a general result on the hyperstability of this equation. Our results are improvements and generalizations of the main result of M. Piszczek and J. Szczawi'{n}ska [21].

full text

Stability of Homomorphisms on Jb∗ –triples Associated to a Cauchy–jensen Type Functional Equation

In this paper, we investigate homomorphisms between JB∗ -triples, and derivations on JB∗ -triples associated to the following Cauchy–Jensen type additive functional equation f ( x + y 2 + z ) + f ( x + z 2 + y ) + f ( y + z 2 + x ) = 2[f (x) + f (y) + f (z)]. The concept of Hyers-Ulam-Rassias stability originated from Th. M. Rassias’ stability theorem that appeared in his paper: On the stabilit...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 07  issue 04

pages  281- 292

publication date 2018-11-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023